sábado, 17 de setembro de 2011

Genética

Genética
A motivação genética: a molécula de DNA.
A genética é o campo da biologia que estuda a natureza química do material hereditário, isto é, o mecanismo de transferência das informações contidas nos genes, compartilhados de geração em geração (dos pais para os filhos).

Além de auxiliar na identificação de anormalidades cromossômicas, ainda durante o desenvolvimento embrionário, promove em caráter preventivo e curativo a utilização de terapias gênicas como medidas corretivas.

A maior colaboração para a genética atual foi dada pelo monge Gregor Mendel, através de seus experimentos com ervilhas e a proposição de suas leis (segregação independente), mesmo antes de se conhecer a estrutura da molécula de DNA.

Célula-Mãe

Christopher Reeve, O Super Homem, era
um forte defensor do uso destas células.


Todo organismo pluricelular é composto por diferentes tipos de células, derivadas de células precursoras, denominadas células-tronco (stem cells), ou células-mãe ou, ainda, células estaminais, cujo processo de diferenciação que gera as células especializadas — da pele, dos ossos e cartilagens, do sangue, dos músculos, do sistema nervoso e dos outros órgãos e tecidos humanos — é regulado, em cada caso, pela expressão de genes específicos. São elas as responsáveis pela formação do embrião e também pela manutenção dos tecidos na vida adulta.

As células-tronco podem se multiplicar, regenerando tecidos lesionados, porque têm a capacidade de se transformar em células idênticas às dos tecidos onde foram implantados. Assim, classificam-se em:

Totipotentes: podem formar todos os tecidos. Formam-se nas primeiras 72 horas após a fecundação do óvulo. Ex: blastômero.

Pluripotentes: podem se especializar em qualquer tecido corporal, mas não podem por si próprias desenvolverem um ser adulto, pois não desenvolvem tecido extraembrionário, como a placenta.

Multipotentes: podem dar origem a diversos outros tipos de células, mas de forma limitada, uma vez que têm capacidade de diferenciarem-se para produzir o tipo de célula especializada do tecido do qual se origina. Ex: célula-tronco do sangue.

Unipotentes: capacidade de se desenvolverem ou diferenciarem em somente um tipo de célula. Ex: células da pele.

O uso de células toti e pluripotentes é mais vantajoso em relação às multi e unipotentes, uma vez que podem fornecer maior número de tipos celulares e serem mais abundantes: nos tecidos, em quantidade menor; no cordão umbilical e placenta, em grandes quantidades e, nos embriões, nas fases iniciais da divisão celular.

Neste aspecto, entra uma gama de questões éticas, uma vez que essas células podem ser obtidas de embriões recém-fecundados e, assim, os criados para fertilização in vitro, mas que não serão utilizados (embriões disponíveis) ou os criados especificamente para pesquisa, clones, órgãos de fetos abortados, etc., possuem grande potencial para uso. Para acrescentar: células sanguíneas de cordão umbilical, no momento do nascimento e alguns tecidos adultos, como da medula óssea podem também ser utilizadas.

A utilização das células-tronco para fins terapêuticos pode representar a única esperança para o tratamento de inúmeras doenças ou para pacientes que sofreram lesões incapacitantes da medula espinhal e que impedem seus movimentos.

Primeira Lei de Mendel


Gregor Mendel realizando experimentos com ervilhas.
O monge e cientista austríaco Gregor Mendel e suas descobertas, feitas por meio de experimentos com ervilhas, realizadas no próprio mosteiro onde vivia, foram extremamente importantes para que hoje conhecêssemos os genes e alguns dos mecanismos da hereditariedade. Suas experiências foram, também, muito significantes para a compreensão de algumas lacunas da Teoria da Evolução, proposta tempos antes.

O sucesso de seus experimentos consiste em um conjunto de fatores. Um deles foi a própria escolha do objeto de estudo: a ervilha Psim sativum: planta de fácil cultivo e ciclo de vida curto, com flores hermafroditas e que reproduzem por autofecundação, além de suas características contrastantes, sem intermediários: amarelas ou verdes; lisas ou rugosas; altas ou baixas; flores púrpuras ou brancas, dentre outras.

Além disso, o monge selecionou e fez a análise criteriosa, em separado, para cada par das sete características que identificou; considerou um número apreciável de indivíduos de várias gerações; e, para iniciar seus primeiros cruzamentos, teve o cuidado de escolher exemplares puros, observando-as por seis gerações resultantes da autofecundação, para confirmar se realmente só dariam origem a indivíduos semelhantes a ele e entre si.

Executando a fecundação cruzada da parte masculina de uma planta de semente amarela com a feminina de uma verde (geração parental, ou P), observou que os descendentes, que chamou de geração F1, eram somente de sementes amarelas. Autofecundando esses exemplares, a F2 se apresentou na proporção de 3 sementes amarelas para 1 verde (3:1).

Com esses dados, Mendel considerou as sementes verdes como recessivas e as amarelas, dominantes. Fazendo o mesmo tipo de análise para as outras características dessa planta, concluiu que, em todos os casos, havia a mesma proporção de 3:1.

Com esse experimento, deduziu que:

• As características hereditárias são determinadas por fatores herdados dos pais e das mães na mesma proporção;
• Tais fatores se separam na formação dos gametas;
• Indivíduos de linhagens puras possuem todos seus gametas iguais, ao passo que híbridos produzirão dois tipos distintos, também na mesma proporção.

Assim, a Primeira Lei de Mendel pode ser enunciada desta forma:

Cada caráter é determinado por um par de fatores genéticos denominados alelos. Estes, na formação dos gametas, são separados e, desta forma, pai e mãe transmitem apenas um para seu descendente.

Após o estudo detalhado de cada um dos sete pares de caracteres em ervilhas, Mendel passou a estudar dois pares de caracteres de cada vez. Para realizar estas experiências, Mendel usou ervilhas de linhagens puras com sementes amarelas e lisas e ervilhas também puras com sementes verdes e rugosas. Portanto, os cruzamentos que realizou envolveram os caracteres cor (amarela e verde) e forma (lisas e rugosas) das sementes, que já haviam sido estudados, individualmente, concluindo que o amarelo e o liso eram caracteres dominantes.
Mendel então cruzou a geração parental (P) de sementes amarelas e lisas com as ervilhas de sementes verdes e rugosas, obtendo, em F1, todos os indivíduos com sementes amarelas e lisas, como os pais dominantes. o resultado de F1 já era esperado por Mendel, uma vez que os caracteres amarelo e liso eram dominantes.
Posteriormente, realizou a autofecundação dos indivíduosF1, obtendo na geração F2 indivíduos com quatro fenótipos diferentes, incluindo duas combinações inéditas (amarelas e rugosas, verdes e lisas).
Em 556 sementes obtidas em F2, verificou-se a seguinte distribuição:


Fenótipos observados em F2Números Obtidos
Valor AbsolutoRelação
Amarelas lisas315315/556
Amarelas rugosas101101/556
Verdes lisas108108/556
Verdes rugosas3232/556



Os números obtidos aproximam-se bastante da proporção 9 : 3 : 3 : 1
Observando-se as duas características, simultaneamente, verifica-se que obedecem à 1ª Lei de Mendel. Em F2, se considerarmos cor e forma, de modo isolado, permanece a proporção de três dominantes para um recessivo. Analisando os resultados da geração F2, percebe-se que a característica cor da semente segrega-se de modo independente da característica forma da semente e vice-versa.


Por Mariana Araguaia
Graduada em Biologia

Nenhum comentário:

Postar um comentário